On the Convergence of Multistep Iteration for Uniformly Continuous Φ-Hemicontractive Mappings
نویسندگان
چکیده
and Applied Analysis 3 In 2005, C. E. Chidume and C. O. Chidume 3 proved the convergence theorems for fixed points of uniformly continuous generalized Φ-hemicontractive mappings and published in 3 . However, there exists a gap in the proof course of their theorems. The aim of this paper is to show the convergence of the multistep iteration with errors for fixed points of uniformly continuous Φ-hemicontractive mappings and revise the results of C. E. Chidume and C. O. Chidume 3 . For this, we need the following Lemmas. Lemma 1.1 see 4 . Let E be a real Banach space and let J : E → 2E be a normalized duality mapping. Then ∥∥x y∥∥2 ≤ ‖x‖ 2〈y, j(x y)〉, 1.7 for all x, y ∈ E and for all j x y ∈ J x y . Lemma 1.2 see 5 . Let {δn}n 0, {λn}n 0 and {γn}n 0 be three nonnegative real sequences and let Φ : 0, ∞ → 0, ∞ be a strictly increasing and continuous function with Φ 0 0 satisfying the following inequality: δ2 n 1 ≤ δ2 n − λnΦ δn 1 γn, n ≥ 0, 1.8 where λn ∈ 0, 1 with ∑∞ n 0 λn ∞, γn o λn . Then δn → 0 as n → ∞. 2. Main Results Theorem 2.1. Let E be an arbitrary real Banach space, D a nonempty closed convex subset of E, and T : D → D a uniformly continuous Φ-hemicontractive mapping with q ∈ F T / ∅. Let {an}, {bk n}, {cn}, {dk n} be real sequences in 0, 1 and satisfy the conditions: i an cn ≤ 1, b n d n ≤ 1, k 1, 2, . . . , p − 1; ii an, cn, b n, d k n → 0 as n → ∞, k 1, 2, . . . , p − 1; iii cn o an , ∑∞ n 0 an ∞. For some x0 ∈ D, let {un}, {w1 n}, {w2 n}, . . . , {wp−1 n } be any bounded sequences ofD, and let {xn} be the multistep iterative sequence with errors defined by 1.6 . Then 1.6 converges strongly to the fixed point q of T . Proof. Since T : D → D is Φ-hemicontractive mapping, then there exists a strictly increasing continuous function Φ : 0, ∞ → 0, ∞ with Φ 0 0 such that 〈 Tx − Tq, j(x − q)〉 ≤ ∥∥x − q∥∥2 −Φ(∥∥x − q∥∥), 2.1 for x ∈ D, q ∈ F T , that is 〈 Tx − x, j(x − q)〉 ≤ −Φ(∥∥x − q∥∥). @ Choose some x0 ∈ D and x0 / Tx0 such that ‖x0 − Tx0‖ · ‖x0 − q‖ ∈ R Φ and denote that r0 ‖x0 − Tx0‖ · ‖x0 − q‖, R Φ is the range of Φ. Indeed, if Φ r → ∞ as r → ∞, then 4 Abstract and Applied Analysis r0 ∈ R Φ ; if sup{Φ r : r ∈ 0, ∞ } r1 < ∞ with r1 < r0 here, we only give a example. If r0 2, Φ t t/ 1 t , then sup{Φ r : r ∈ 0, ∞ } r1 1 < 2 r0 , then for q ∈ D, there exists a sequence {wn} in D such that wn → q as n → ∞ with wn / q. Furthermore, we obtain that Twn → Tq as n → ∞. So {wn − Twn} is the bounded sequence. Hence, there exists natural number n0 such that ‖wn − Twn‖ · ‖wn − q‖ < r1/2 for n ≥ n0, then we redefine x0 wn0 and ‖x0 − Tx0‖ · ‖x0 − q‖ ∈ R Φ . This is to ensure that Φ−1 r0 is defined well. Step 1. We show that {xn} is a bounded sequence. Set R Φ−1 r0 , then from above formula @ , we obtain that ‖x0 − q‖ ≤ R. Denote B1 { x ∈ D : ∥∥x − q∥∥ ≤ R}, B2 { x ∈ D : ∥∥x − q∥∥ ≤ 2R}. 2.2 Since T is the uniformly continuous, so T is a bounded mapping. We let M sup x∈B2 {∥∥Tx − q∥∥ 1} max { sup n ∥∥w1 n − q ∥∥ } , sup n ∥∥w2 n − q ∥∥ } , . . . , sup n ∥∥wp−1 n − q ∥∥ } , sup n ∥un − q ∥∥} } . 2.3 Next, we want to prove that xn ∈ B1. If n 0, then x0 ∈ B1. Now, assume that it holds for some n, that is, xn ∈ B1. We prove that xn 1 ∈ B1. Suppose that it is not the case, then ‖xn 1 − q‖ > R > R/2. Since T is uniformly continuous, then for 0 Φ R/2 /8R, there exists δ > 0 such that ‖Tx − Ty‖ < 0 when ‖x − y‖ < δ. Denote τ0 min { 1, R M , Φ R/2 8R M 2R , δ 2M 4R } . 2.4 Since an, b n, cn, d k n → 0 as n → ∞ for k 1, 2, . . . , p−1. Without loss of generality, we assume that 0 ≤ an, b n, cn, d n ≤ τ0 for any n ≥ 0. Since cn o an , let cn < anτ0. Now, estimate ‖yk n − q‖ for k 1, 2, . . . , p − 1. By using 1.6 , we have ∥∥yp−1 n − q ∥∥ ≤ ( 1 − bp−1 n − dp−1 n ∥∥xn − q ∥∥ bp−1 n ∥Txn − q ∥∥ dp−1 n ∥∥wp−1 n − q ∥∥ ≤ R τ0M ≤ 2R, 2.5 then yp−1 n ∈ B2. Similarly, we have ∥∥yp−2 n − q ∥∥ ≤ ( 1 − bp−2 n − dp−2 n ∥∥xn − q ∥∥ bp−2 n ∥∥Typ−1 n − q ∥∥ dp−2 n ∥∥wp−2 n − q ∥∥ ≤ R τ0M ≤ 2R, 2.6 Abstract and Applied Analysis 5 then yp−2 n ∈ B2, . . .. We have ∥∥y1 n − q ∥∥ ≤ ( 1 − b1 n − d1 n ∥∥xn − q ∥∥ b1 n ∥∥Ty2 n − q ∥∥ d1 n ∥∥w1 n − q ∥∥ ≤ R τ0M ≤ 2R, 2.7and Applied Analysis 5 then yp−2 n ∈ B2, . . .. We have ∥∥y1 n − q ∥∥ ≤ ( 1 − b1 n − d1 n ∥∥xn − q ∥∥ b1 n ∥∥Ty2 n − q ∥∥ d1 n ∥∥w1 n − q ∥∥ ≤ R τ0M ≤ 2R, 2.7 then y1 n ∈ B2. Therefore, we get ∥xn 1 − q ∥∥ ≤ 1 − an − cn ∥xn − q ∥∥ an ∥∥Ty1 n − q ∥∥ cn ∥un − q ∥∥ ≤ R τ0M ≤ 2R. 2.8 And we have ‖xn 1 − xn‖ ≤ an ∥∥Ty1 n − xn ∥∥ cn‖un − xn‖ ≤ an ∥∥Ty1 n − q ∥∥ ∥xn − q ∥∥) cn ∥un − q ∥∥ ∥xn − q ∥∥) ≤ τ0 ∥∥Ty1 n − q ∥∥ ∥un − q ∥∥) 2∥xn − q ∥∥] ≤ τ0 M 2R ≤ Φ R/2 8R , ∥∥xn 1 − y1 n ∥∥ ≤ an ∥∥Ty1 n − xn ∥∥ cn‖un − xn‖ b1 n ∥∥Ty2 n − xn ∥∥ d1 n ∥∥w1 n − xn ∥∥ ≤ an ∥∥Ty1 n − q ∥∥ ∥xn − q ∥∥) cn ∥un − q ∥∥ ∥xn − q ∥∥) b1 n ∥∥Ty2 n − q ∥∥ ∥xn − q ∥∥) d1 n ∥∥w1 n − q ∥∥ ∥xn − q ∥∥) ≤ τ0 ∥∥Ty1 n − q ∥∥ ∥un − q ∥∥ 2∥xn − q ∥∥) ∥∥Ty2 n − q ∥∥ ∥∥w1 n − q ∥∥ 2∥xn − q ∥∥)] ≤ τ0 2M 4R ≤ δ. 2.9 Further, by using uniform continuity of T , we have ∥∥Txn 1 − Ty1 n ∥∥ < Φ R/2 8R . 2.10 6 Abstract and Applied Analysis In view of Lemma 1.1 and the above formulas, we obtain ∥xn 1 − q ∥∥2 ∥∥(xn − q ) an ( Ty1 n − xn ) cn un − xn ∥∥ 2 ≤ ∥xn − q ∥∥2 2an 〈 Ty1 n − xn, j ( xn 1 − q )〉 2cn 〈 un − xn, j ( xn 1 − q )〉 ≤ ∥xn − q ∥∥2 2an 〈 Txn 1 − xn 1 xn 1 − xn − Txn 1 Ty1 n, j ( xn 1 − q )〉 2cn‖un − xn‖ · ∥xn 1 − q ∥∥ ≤ ∥xn − q ∥∥2 − 2anΦ ∥xn 1 − q ∥∥) 2an‖xn 1 − xn‖ · ∥xn 1 − q ∥∥ 2an ∥∥Txn 1 − Ty1 n ∥∥ · ∥xn 1 − q ∥∥ 2cn ∥un − q ∥∥ ∥xn − q ∥∥xn 1 − q ∥∥ ≤ ∥xn − q ∥∥2 − 2anΦ ( R 2 ) 2an Φ R/2 8R · 2R 2an R/2 8R · 2R 2anτ0 R M 2R ≤ ∥xn − q ∥∥2 − anΦ ( R 2 ) 2an Φ R/2 8R M 2R R M 2R ≤ ∥xn − q ∥∥2 − an 2 Φ ( R 2 ) ≤ R2, 2.11 which is a contradiction. Hence, xn 1 ∈ B1, that is, {xn} is a bounded sequence; it leads to that {y1 n}, {y2 n}, . . . , {yp−1 n } are all bounded sequences as well. Step 2. We want to prove ‖xn − q‖ → 0 as n → ∞. Since an, b n, cn, d k n → 0 as n → ∞ and {xn}, {y1 n} are bounded. From 2.9 , we obtain lim n→∞ ‖xn 1 − xn‖ 0, lim n→∞ ∥∥xn 1 − y1 n ∥∥ 0, lim n→∞ ∥∥Txn 1 − Ty1 n ∥∥ 0. 2.12
منابع مشابه
Strong Convergence Theorem for Fixed Points of Nearly Uniformly L−Lipschitzian Asymptotically Generalized Φ-Hemicontractive Mappings
Let C be a nonempty convex subset of a real Banach space E in which the normalized duality map is norm-to-norm uniformly continuous on bounded subsets of E. Let T be a nearly uniformly L−Lipschitzian asymptotically generalized Φ-hemicontractive map in the intermediate sense. An iterative process of the Manntype is proved to converge strongly to the unique fixed point of T . Under this setting, ...
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملStrong convergence results for fixed points of nearly weak uniformly L-Lipschitzian mappings of I-Dominated mappings
In this paper, we prove strong convergence results for a modified Mann iterative process for a new class of I- nearly weak uniformly L-Lipschitzian mappings in a real Banach space. The class of I-nearly weak uniformly L-Lipschitzian mappings is an interesting generalization of the class of nearly weak uniformly L-Lipschitzian mappings which inturn is a generalization of the class of nearly unif...
متن کاملConvergence results: A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces
In this article, we introduce a new type iterative scheme for approximating common fixed points of two asymptotically nonexpansive mappings is defined, and weak and strong convergence theorem are proved for the new iterative scheme in a uniformly convex Banach space. The results obtained in this article represent an extension as well as refinement of previous known resu...
متن کاملSome results on convergence and existence of best proximity points
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
متن کامل